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This supplementary document provides further method details, including specific aspects of the
camera model and our coarse-to-fine training scheme. We also expand on description of our dataset
and experimental design, included ablation studies, provide additional quantitative results, visual
examples, and edits across both autonomous driving and challenging outdoor video sequences. We
recommend reviewing the accompanying video, which provides a compelling summary of our key
visual contributions.

Given the different modalities of our supplementary materials, we provide the high-resolution videos
within a google drive folder and the code within a github repository along this document for further
details.

To give an overview of the provided videos within the google drive folder, we briefly highlight the
structure:

• overview.mp4 - contains our overview video, showcasing our key visual results and
comparisons. For detailed examples see below.

• edits/[manuscript|supplement]/figure_[Number] - contains the videos matching
the given figure number in either our manuscript or this supplementary.

• visuals/[waymo|davis]/[sequence] - contains all reconstruction for Waymo [24] and
Davis [19], and also decompositions for the latter one. We choose the abbreviation ORE
for OmniRe [4], ERF for EmerNeRF [31], LNA for Layered Neural Atlases [10], ORF for
OmnimatteRF [13] and GT for the ground truth videos.

To provide a better overview of the remaining supplementary material, we provide a table of contents.
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A Additional Method Details

A.1 Camera Model

For rendering and scene interaction, we require a mapping from image coordinates to a 3D world
reference system. We utilize the standard pinhole camera model parameterized by intrinsic K and
extrinsic g(t) matrices. Considering the projection of a single pixel (u, v) at timestamp t, the ray
origin o and direction d in a world reference system can be computed by:

d̂(u, v) = (K−1 ⊙

[
u
v
1

]
· f), ô(u, v) = d̂(u, v)−

[
0
0
f

]
,

o(u, v, t) = g(t)⊙ ô(u, v), d(u, v, t) = R(t)⊙ d̂(u, v)

(1)

for a camera projection plane lying at z=0. For better readability, we avoided stating homogeneous
vector conversions. The inverse of the intrinsic matrix K ∈ R3×3 (2) is used to convert a pixel in
the camera’s local coordinate system. Further, the extrinsic matrix g(t) ∈ R3×4, converts from the
camera‘s local into the world coordinate system. These matrices can be defined as:

g(t) =

[
1 −rz ryi xi

rzi 1 −rxi yi
−ryi rxi 1 zi

]
︸ ︷︷ ︸

R(t)

︸︷︷︸
T(t)

,K−1 =

[
1/fmx 0 −px/fmx

0 1/fmy −py/fmy

0 0 1

]
(2)

The values comprising the intrinsic matrix K are typically provided by the camera manufacturer,
whereby f ∈ R defines the focal length, mx,my the image width and height, and px, py define the
principal point. While camera extrinsics are generally provided in autonomous driving datasets, these
values are susceptible to inaccuracies due to sensor miscalibration or accumulated odometry drift.
Furthermore, when estimated using structure-from-motion or neural methods, such as RoDynRF
[14] in our outdoor experiments, the resulting poses may also contain noise. To refine these, we
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utilize the same spline-based offset learning approach [5] as discussed for our nodes to map t to its
correspondences control points PT

cam,i,PR
cam,i using interpolation. The learning process will adjust

for possible shifts in the camera rotation R(t) and translation T(t), recalling our definitions (3, 4):

T(t) = T̃t + ηT · S(t, PT
cam)

R(t) = R̃t · q(ηR · S(t, PR
cam))

(3)

PT
cam =


[

x
y
z

]
i


P

i=0

, PR
cam =


[

rx

ry

rz

]
i


P

i=0

(4)

whereby S : [0, 1]× RP → RF denotes the cubic hermite spline interpolation [6], as discussed in
[5], and PT

cam,PR
cam ∈ RP×3 being zero-initialized learnable translation and rotation offsets of the

camera. We further denote the rotation vector to unit quaternion operation as q : [0, 2π)3 → H for H
being the set of unit-quaternions.

Given such definition, the number of control points P ∈ N can be used to encourage smooth motion,
e.g. by setting it smaller than the number of frames F in the video I (P = F/2), or keeping it
equal to the number of frames to keep the expressivity. The prior-known positions are stated as
T̃t ∈ RF×3 and R̃t ∈ HF describing camera translation and rotation respectively. To control the
influence of the learned offsets with introduced temperature weights ηT = ηR = 0.5.

A.2 Coarse-to-fine Optimization

To limit the expressiveness of the view-dependent fields Fi,ϕ to model as few changes as possible,
as well as enforcing the planar flow field to firstly learn coarse alignment, we apply a coarse-to-fine
learning strategy by masking the hash-encoding using a sparsity function [5] sparse(·, τ) based on
the training progress τ ≈ clamp(0.05 + sin(epoch · π/1.6 · max_epoch)). For epoch being the
current epoch in training and max_epoch = 80 the total epochs to conduct. Empirically, sparse
deactivates several encoding dimensions E from the multi-resolution hash encodings Hi,ϕ : [0, 1]4 →
RE ,Hi,f : [0, 1]2 → RE for a node i, setting their activations to zero and activates them when
training progresses. Correspondingly, the view- and flow-neural fields Fi,ϕ,Fi,f may be rewritten as

Fi,ϕ(x) = Ni,ϕ(sparse(Hi,ϕ(x, ϕ), τ)), (5)
Fi,f (x) = Ni,f (sparse(Hi,f (x), τ)), (6)

for Ni,ϕ : RE → R4 being the view-dependent MLP and Ni,f : RE → RPf×2 being the flow MLP,
predicting Pf flow control points, correspondingly. Further, x ∈ [0, 1]2 denotes the intersection
point in planar coordinates and ϕ ∈ [0, 1]2 its normalized spherical view angle. Additionally, the
expressiveness of the model and its learnable parameters are controlled using a phase-based learning
strategy, which we further detail below.

Note: while we denoted the color and opacity of the view-dependent field Fi,ϕ in the main manuscript
separately to increase readability, e.g. Fi,ϕ,c,Fi,ϕ,α, they share parameters.

A.3 Phase-based Learning

Our training strategy employs a three-phase optimization approach combined with the previously
mentioned coarse-to-fine learning strategy to effectively optimize the various components of each
node. In the first phase, from epoch 0 to 5, only the positional parameters PT

i ,PR
i ,PT

cam,PR
cam

1 are
optimized to compensate for positional errors of the objects and camera. In the second phase, epoch
5 to 20, the color and opacity fields Fi,c,Fi,α are additionally optimized. In the last third phase,
starting from epoch 20, all parameters PT

i ,PR
i ,PT

cam,PR
cam,Fi,c,Fi,α,Fi,f ,Fi,ϕ are optimized

together.

1Note: PR
i is not optimized in our main automotive experiments.
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A.4 Parametrization

In the following we detail the parametrization of our atlas nodes. Our model fundamentally dis-
tinguishes between two types of information for each atlas node: fixed initial conditions (pre-
conditioning) and the core learnable neural fields.

Fixed Initial Conditions To establish a robust starting point for optimization, we initialize the
base color C̃i and base alpha Ãi for each object’s appearance. These non-learnable base textures
are derived via an initial forward projection (using the camera model in Sec. A.1) of the masked
image within a single reference frame onto the object’s position-initialized plane. We use the image
corresponding to the mask with the largest size as reference. The position initialization itself is carried
out using our initial translation and rotation parameters T̃i,t, R̃i,t (3, 4), which are extracted from 3D
bounding boxes (if available) or image homographies based on the masked region, combined with
a monocular depth estimation. These base parameters remain fixed, while the learned components
correct for initialization errors.

Learnable Neural Fields The core appearance and motion are then captured by our learnable
neural fields: the color field Fi,c, opacity field Fi,α, flow field Fi,f , and view-dependent field Fi,ϕ.
These fields are explicitly designed and optimized to serve distinct, disentangled roles:

• The color Fi,c and opacity Fi,α fields (5, 6) are primarily responsible for modeling the
view-agnostic, canonical appearance of the object in its atlas space.

• The flow field Fi,f (7) enables the representation of non-rigid motion by warping the
canonical appearance across time, facilitating better editability by maintaining consistent
base texture across frames.

• The view-dependent field Fi,ϕ (5, 6) is designed to capture subtle view-dependent effects
(e.g., specularities, reflections) that cannot be explained by the canonical appearance or flow
alone.

The optimization process distinguishes these components through our phase-based (Sec. A.3) and
coarse-to-fine (Sec. A.2) learning strategy. By initially limiting the expressiveness of the view-
dependent field (via sparse encoding) and progressively activating it, we implicitly regularize the
model by prioritizing the non-view-dependent fields (Fi,c,Fi,α,Fi,f ) for primary appearance and
motion capture. This forces the components relevant to editing and flow-mapping to learn the
majority of the information, ensuring a disentangled representation where Fi,ϕ only incorporates
subtle, additional changes.

Number of Parameters We state the parameterization of the learnable components of each Neural
Atlas Graphs (NAG) node in Tab. 1, while we refer to Sec. B.3 for a description of each field’s
architecture. The translation and rotation control points PT

i ∈ RP×3,PR
i ∈ RP×3 for each object

i are dependent on the scene length F and expected smoothness. The camera consists of the same
number of translation and rotation parameters. The background will have no learnable position
parameters due to its static definition and has no opacity field Fi,α due to its constant opacity of 1.
While the number of parameters may be decreased based on the expected size of an object to increase
efficiency, we use a single, unified size for all objects for simplicity.

Table 1: Number of learnable parameters for a single NAG node.
Component Learnable Parameters

Color Field Fi,c 3,720,488
Flow Field Fi,f 3,720,488
Opacity Field Fi,α 3,720,488
View-Dependent Field Fi,ϕ 6,716,320
Translation (single control point) PT

i 3
Rotation (single control Point) PR

i 3
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B Experimental Details

B.1 Baselines

In the following we briefly describe our comparison baselines within the Automotive and Outdoor
domain.

Automotive Baselines Within the autonomous driving scenes, we evaluate against OmniRe (ORe)
[4], a recent dynamic 3D Gaussian Splatting (3DGS) method, which was explicitly designed for
autonomous driving scenes including a dedicated SMPL-based human [15] model for pedestrians
and showing peak visual performance on the Waymo dataset [24]. Further, given its object-specific
architecture, it allows for positional edits, but lacks support for texture editing. We also compare
against EmerNeRF (ERF) [31], a state-of-the-art dynamic scene reconstruction method, which lever-
ages learned dynamics models and neural radiance fields to capture complex object motion and
interactions, including non-rigid transformations. Although ERF is not object-specific, it serves as a
recent and relevant NeRF baseline.
Note on ORe Scene Decomposition: Although the authors provide visualizations of scene decomposi-
tions within their manuscript, we could not find the corresponding implementation in the provided
codebase. Therefore, we adapted their evaluation scripts to specify and render individual object IDs
for decomposition comparisons, while leaving the core implementation untouched.

Outdoor Baselines Our evaluation for outdoor videos, conducted on the DAVIS dataset [19],
compares our approach against both recent texture editing and state-of-the-art video matting methods.
Layered Neural Atlases (LNA) [10] serves as our texture editing baseline. LNA operates by learning
a 2D coordinate mapping, at test time, that projects pixels from all video frames onto a single texture
atlas. This atlas can then be edited directly, with the changes re-projected back to all frames for scene
manipulation. OmnimatteRF (ORF) is included as the most recent video matting baseline. These
models are designed for robust layer separation, aiming to cover objects and associated effects (such
as shadows) by learning a 2D foreground layer per-segmented object in image space, situated on top
of a 3D background modeled by a radiance field. Crucially, as the 2D foreground layers are generated
on a per-frame basis by a U-Net [21], ORF contains no editable layer representation - all information
is encoded within the learned U-Net weights.

For all our evaluations, we use the codebase provided by the respective authors unless explicitly
stated. We used the recommended settings by the authors and only changed parameters to ensure a
fair comparison (e.g., training on a higher resolution). For specific details on parameter changes, we
refer to Sec. B.2.

B.2 Datasets

Driving Scenes This section provides a detailed description of the specific subset of the Waymo
Open Dataset [24] used for evaluating our proposed method. As outlined in the main manuscript,
we specifically selected scenes characterized by small ego-vehicle movement but a high density
of dynamic objects, frequent occlusions, and significant variations in object motion emphasizing
editability. Our evaluation was conducted on a total of 7 distinct scene segments, from which we
extracted 25 subsequences, ranging from 21 to 89 frames sampled at 10Hz. During the subsequence
creation, we excluded frames containing corrupted bounding box annotations, as well as longer
sequences where no significant object intersection occurred. The sequence identifiers and ranges are
stated in Tab. 2. For the remaining images within these subsequences, we segmented all objects2

for which bounding box information was available and that exhibited significant motion or caused
substantial occlusions. Representative ground truth images from each of these sequences, showcasing
the generated instance segmentation masks, are visualized in Fig. 1. For all methods we used all
images of the datasets (as per experiment’s subset division) in the native resolution (1920 × 1280) to
train the models, yielding a representation of maximal visual expressiveness. Since ORe explicitly
removes lens distortion during its preprocessing pipeline, we also apply this undistortion step for our
method. We note that, due to the ERF model’s implementation, no undistortion process is carried out.

2We provide these masks along our code base.
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Consequently, all methods are evaluated against their respective ground truth targets (distorted or
undistorted) to ensure a fair scene reconstruction comparison.

Table 2: Waymo [24] dataset sequences within our automotive evaluation. We stating the range, as
respective inclusive start and end indices, forming our 25 subsequences.

Sequence Segment Specifier Range

s-125 segment-12511696717465549299 0 - 40, 40 - 93, 93 - 124, 124 - 149
s-141 segment-14133920963894906769 2 - 53, 53 - 101, 102 - 173, 174 - 197
s-203 segment-2036908808378190283 3 - 58, 60 - 107
s-324 segment-3247914894323111613 0 - 42, 42 - 96, 96 - 161, 161 - 197
s-344 segment-3441838785578020259 0 - 51, 52 - 95, 95 - 135, 135 - 197
s-952 segment-9521653920958139982 0 - 63, 64 - 140, 141 - 198
s-975 segment-9758342966297863572 0 - 68, 69 - 99, 99 - 162, 175 - 195

Outdoor Scenes For evaluating the generalization of our method to diverse outdoor scenarios, we
utilized a subset of the high-resolution DAVIS dataset [19], a common benchmark in video object
segmentation and matting. Specifically, we selected the same 15 sequences also used by the baseline
methods, ORF [13] and LNA [10], ensuring a direct basis for comparison across varied objects,
backgrounds, and camera motion. We employed the dataset provided instance masks, and combined
them into a single foreground mask per frame due to LNA’s implementation. Consistent with ORF,
we used RodynRF [14] for initial camera pose estimation. Recognizing that the original evaluation
resolutions for ORF (428 x 270) and LNA (768 × 432) were significantly lower than our capabilities,
we leveraged more computational resources to evaluate our method and LNA on the full DAVIS
resolution (up to 1920 x 1080), with the exception of the lucia sequence. Due to LNA’s high memory
demands on this longer scene, we down-sampled lucia to 960 x 540 for LNA only. For ORF, given
its original compute limitations and our focus on high-resolution performance, we down-sampled
the input images by a factor of two (e.g., to 960 x 540) across all sequences, followed by bilinear
interpolation of its output to the original resolution for accurate comparison.

B.3 Neural Atlas Graphs Evaluation

NAG Training Our NAG is trained for 80 epochs, whereby each epoch consists of 2.8× 108 ray-
casts into the scene. Each epoch is subdivided into 140 batches, and each batch consists of 100,000
spatial ray-casts which are simultaneously evaluated along 20 random timestamps 3. We use the Adam
[12] optimizer, with an initial learning rate of 0.001 in combination with a ”ReduceLROnPlateau”
scheduler, which will be activated from epoch 20 on.

Atlas Node Architecture The neural fields Fi,c,Fi,α,Fi,f andFi,ϕ within every atlas node are
parameterized by 5-layer MLPs (64 neurons, ReLU), while the input coordinates are encoded with
a 16-level multi-resolution hash encoding [17] (4 features/level, scale 1.61, hashmap size 17, base
resolution 4, linear interpolation). We state the actual sizes in a dedicated section A.4. For the
Waymo [24] dataset, the spline-based motion model of each node utilizes a number of control points
P = F equal to the number of images F in the sequence. This is necessary to capture the potentially
rapid camera motion (10Hz sampling), caused by oscillation on ego vehicle stops, which a lower-
resolution spline cannot accurately represent. For the DAVIS [19] dataset, we set the number of
control points to P = F/2, allowing for a smoother representation of the nodes, yielding a slightly
more robust approach to compensate for inaccuracies in initialization. The effect of the control points
is briefly studied within our ablations Sec. C.4. The training runtime ranges from approximately
2 to 6 hours depending on scene complexity and length, using a machine with a NVIDIA L 40
GPU and 64 GB RAM. Our reproducible code and dataset preparation schemes are available at:
https://github.com/jp-schneider/nag.

3Based on the dynamic architecture of the NAG, leading to a different total parameter sizes, we decrease in
populated scenes the number of ray-casts per batch and increase the batches per epoch to fit the model into the
available VRAM.
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Figure 1: Ground truth references and mask examples out of the studied autonomous driving Waymo
sequences [24]. Displayed are sequences in order: s-125, s-141, s-203, s-324, s-344, s-952, s-975.
The sequences containing various objects and motion patterns. For our NAG representation, each of
the masked instances will be attributed to its own atlas node.

C Results

This supplementary section provides a comprehensive extension of the results presented in the main
manuscript, necessitated by space constraints. We begin by recalling our main quantitative results in
Sec. C.1, now including inter-frame standard variations to rigorously assess significance and temporal
consistency. Following this, we dedicate Sec. C.2 to evaluate editing quality using explicit temporal
consistency measures. Subsequently, we analyze our model’s performance by detailing the partial
limitations of the NAG method under large ego-motion conditions (Sec. C.3). We then proceed
to ablate our model, conducting extensive ablation studies in Sec. C.4, where we analyze network
sizes, the impact of key components, and sensitivity to input masks. Finally, we provide a rich set of
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additional visual results in Sec. C.5, including automotive scene reconstruction comparisons, editing
figures demonstrating positional and time shifts, object insertions, and removals. This is followed by
further reconstruction, decomposition, and editing results on DAVIS [19] outdoor scenes. Concluding
this additional results section, we benchmark against three additional Gaussian Splatting baselines
for autonomous driving in Sec. C.6 and provide a transparent overview of measured training times
for representative scenes across all methods of our main manuscript in Sec. C.7.

C.1 Additional Quantitative Results

We extend the quantitative analysis from our main manuscript, benchmarking our approach against
the recent OmniRe [4] —a 3D 3DGS framework — and EmerNeRF [31] a recent dynamic NeRF
model. We now explicitly provide inter-frame standard deviation measures to quantify temporal
consistency. Tab. 3 lists the PSNR, SSIM [29], and LPIPS [36] scores for each scene, along with their
inter-frame standard deviations over all different sub-segments of individual sequences, measuring
temporal consistency.

We further isolate and assess the dynamic elements by partitioning them into a rigid “Vehicle”
category and a non-rigid “Human” category. This division allows us to specifically evaluate how each
class benefits from our underlying rigid-motion model. Tab. 4 reports per-class PSNR and SSIM [29]
results, including accompanying inter-object standard deviations over the sub-segments. The results
demonstrate substantial improvements over the strongest baseline, confirming that our gains stem not
merely from improved background rendering but from the high fidelity of our model in capturing
even non-rigid motion.

Beyond the improvements in overall and object-based quality, the competitively low values for the
inter-frame standard deviations highlight the high temporal consistency of our method. Our PSNR
score of ± 0.91 compares favorably against OmniRe (± 1.39). While this is slightly worse than the ±
0.78 achieved by EmerNeRF, EmerNeRF achieves this stability at a significantly lower quality (34.93
dB PSNR versus our 41.85 dB PSNR). For SSIM and LPIPS we improve against both baselines. Also,
on object-based consistency, we achieve comparable temporal consistency in PSNR, while improving
it on SSIM. This demonstrates our method’s capability to learn a high-quality and temporally stable
scene representation.

To verify generalization, we test our method on diverse outdoor sequences from the DAVIS dataset
[19]—a high-resolution (up to 1920 × 1080) benchmark commonly used by matting methods [10,
16, 13]. Following the selection of 15 sequences in [10, 13] featuring varied objects, complex
backgrounds, and dynamic camera moves, we summarize our results in Tab. 5, including inter-frame
standard deviations for PSNR, SSIM [29], and LPIPS [36]. In terms of visual quality, we significantly
outperform the baselines in PSNR, SSIM, and LPIPS. While our standard deviations measuring
temporal consistency are competitive in SSIM and LPIPS, our PSNR stability is weaker (± 1.3 vs. ±
0.66). Crucially, this is achieved alongside a quality improvement of over 7 dB PSNR. We attribute
this weakness to challenging scenes (e.g. tennis) which include highly non-rigid and rapid motion.
This type of motion can lead to artifacts due to flow collapse and the difficulty of learning large and
rapidly changing flow vectors within our spline-based smooth flow assumption.

To further quantify the quality and temporal consistency of our method against the core baselines,
we computed the Fréchet Video Distance (FVD) [25] metric, a dedicated video quality evaluation
method originally targeted for generative videos, proposed to better align with human judgment than
PSNR or SSIM. Additionally, we evaluated the Temporal (T)-LPIPS, which is applied inter-frame
wise to indicate differences in machine perception and can therefore be interpreted as an additional
temporal consistency metric. Since inter-frame differences are also induced by changes in the scene
or camera, T-LPIPS scores must be interpreted relative to the T-LPIPS of the Ground Truth video. The
FVD and T-LPIPS metrics are presented in Tab. 6. For this evaluation, we use the ablation sequences
(s-141, s-975) from the Waymo Open Dataset and the sequences (blackswan, bear, and boat) from
DAVIS. Our method achieves the best FVD scores across the evaluated sequences, aligning with the
perceptual improvements observed in our earlier PSNR, SSIM, and LPIPS evaluations. In terms of
temporal consistency (T-LPIPS), our method’s score is the closest to that of the Ground Truth (GT)
video, indicating a similar degree of fidelity in inter-frame changes.
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Table 3: Quantitative Evaluation on Dynamic Driving Sequences of the Waymo [24] Open Driving
Dataset. The temporal consistency is measured by the inter-frame standard deviation (± STD), which
is calculated over sub-segments and mean-aggregated per sequence. Best results are in bold. ORe
refers to OmniRe [4], and ERF to EmerNeRF [31]. Our method compares very favorably in overall
quality, showing higher consistency in SSIM and LPIPS over the baselines and highly competitive
consistency in PSNR.

Seq. PSNR ↑ SSIM ↑ LPIPS ↓
Ours ORe ERF Ours ORe ERF Ours ORe ERF

s-975 40.21 37.35 34.83 0.976 0.968 0.937 0.058 0.080 0.143
±1.11 ±1.73 ±1.65±0.004±0.005±0.013±0.012±0.005±0.017

s-203 43.15 36.93 36.07 0.978 0.966 0.936 0.070 0.094 0.205
±0.39 ±1.14 ±0.43±0.001±0.002±0.003±0.004±0.003±0.005

s-125 43.32 38.74 35.20 0.980 0.970 0.933 0.057 0.079 0.182
±0.49 ±0.87 ±0.48±0.003±0.002±0.005±0.007±0.003±0.006

s-141 42.55 36.14 34.83 0.978 0.964 0.924 0.057 0.087 0.178
±1.60 ±1.29 ±0.53±0.003±0.003±0.006±0.005±0.005±0.011

s-952 41.89 39.67 35.32 0.976 0.977 0.938 0.058 0.050 0.120
±0.59 ±0.84 ±0.84±0.003±0.003±0.008±0.006±0.002±0.012

s-324 40.85 32.58 33.63 0.977 0.953 0.926 0.038 0.071 0.124
±1.31 ±2.21 ±0.57±0.002±0.010±0.005±0.004±0.009±0.007

s-344 41.84 36.67 35.24 0.983 0.973 0.946 0.031 0.043 0.084
±0.52 ±1.40 ±0.77±0.001±0.003±0.006±0.002±0.003±0.005

Mean 41.85 36.78 34.93 0.978 0.967 0.934 0.051 0.070 0.142
±0.91 ±1.39 ±0.78±0.002±0.004±0.007±0.006±0.004±0.010

Table 4: Quantitative Evaluation of Human and Vehicle Rendering on Waymo [24] Driving Sequences.
The stated standard deviations (± STD), are calculated following Tab. 3, and mean-aggregated per
object and sub-sequence.

Seq. Vehicle PSNR ↑ Vehicle SSIM ↑ Human PSNR ↑ Human SSIM ↑
Ours ORe ERF Ours ORe ERF Ours ORe ERF Ours ORe ERF

s-975 46.79 33.09 30.21 0.991 0.939 0.820 45.37 32.99 28.53 0.989 0.927 0.777
±1.21 ±3.37 ±1.73±0.001±0.038±0.035 ±1.58 ±2.60 ±1.13±0.002±0.021±0.030

s-203 41.90 30.45 27.10 0.986 0.910 0.774 45.40 34.85 33.54 0.986 0.950 0.901
±1.89 ±3.14 ±1.89±0.005±0.046±0.053 ±1.65 ±2.81 ±1.29±0.004±0.017±0.016

s-125 41.00 28.72 24.55 0.989 0.878 0.709 N/A N/A N/A N/A N/A N/A
±1.90 ±2.42 ±1.24±0.004±0.054±0.049 N/A N/A N/A N/A N/A N/A

s-141 43.21 33.22 27.36 0.981 0.929 0.744 44.22 33.31 28.86 0.986 0.907 0.769
±1.44 ±2.05 ±1.21±0.007±0.028±0.036 ±1.61 ±2.55 ±1.67±0.005±0.044±0.051

s-952 40.94 31.15 27.70 0.986 0.928 0.810 40.45 32.32 28.10 0.968 0.894 0.740
±1.46 ±2.59 ±2.23±0.004±0.036±0.061 ±2.82 ±2.35 ±2.22±0.021±0.039±0.065

s-324 41.71 31.03 27.87 0.986 0.921 0.798 44.12 32.09 26.40 0.988 0.894 0.689
±1.56 ±3.41 ±1.96±0.004±0.048±0.053 ±1.95 ±2.63 ±1.78±0.005±0.041±0.065

s-344 43.97 33.02 30.65 0.985 0.931 0.835 40.99 30.20 25.94 0.975 0.882 0.721
±1.69 ±2.29 ±1.43±0.007±0.019±0.018 ±2.97 ±2.57 ±1.40±0.016±0.045±0.051

Mean 42.88 31.69 28.09 0.986 0.922 0.787 42.94 32.24 27.78 0.981 0.901 0.744
±1.56 ±2.73 ±1.67±0.005±0.037±0.043 ±2.21 ±2.55 ±1.67±0.010±0.039±0.052

C.2 Assessment of Editing Quality

Quantifying video quality for edited scenes, particularly within decomposition-based methods like
ours, remains an open problem. Notably, related works such as Layered Neural Atlases (LNA) [10]
and OmnimatteRF (ORF) [13] also omit a direct quantitative evaluation of edited video quality. We
posit that this omission stems from two major hurdles:

Firstly, a direct, quantitative assessment of video quality is complicated by the lack of available
ground truth data. This area is currently the subject of intensive research in Blind Video Quality

9



Table 5: Quantitative evaluation results on the Davis Dataset [19] of diverse outdoor scenes with
inter-frame standard deviation (± STD) over all images from each scene. The best results are in bold
for all metrics. Our method consistently yields higher quality than its competitors OmnimatteRF
(ORF) [13] and Layered Neural Atlases (LNA) [10], while maintaining competitive temporal stability.
(Best results are in bold.)

Sequence PSNR ↑ SSIM ↑ LPIPS ↓
Ours ORF LNA Ours ORF LNA Ours ORF LNA

bear 33.47 24.88 26.51 0.934 0.658 0.771 0.091 0.464 0.287
±1.42 ±0.52 ±0.72±0.027±0.020±0.018±0.030±0.011±0.015

blackswan 36.36 26.67 29.26 0.938 0.739 0.815 0.097 0.458 0.318
±0.53 ±0.98 ±0.48±0.005±0.031±0.014±0.010±0.032±0.020

boat 35.83 28.63 30.15 0.932 0.761 0.816 0.099 0.376 0.274
±0.42 ±0.31 ±0.48±0.005±0.012±0.011±0.009±0.013±0.011

car-shadow 36.67 29.26 28.47 0.947 0.861 0.850 0.084 0.313 0.269
±1.57 ±0.38 ±0.48±0.010±0.014±0.015±0.011±0.014±0.015

elephant 33.91 26.94 28.34 0.922 0.731 0.772 0.088 0.423 0.325
±2.04 ±0.45 ±0.55±0.033±0.012±0.013±0.013±0.006±0.010

flamingo 34.96 25.74 27.10 0.928 0.753 0.783 0.106 0.483 0.349
±0.65 ±0.73 ±1.01±0.007±0.018±0.020±0.015±0.008±0.013

hike 29.74 25.15 24.77 0.886 0.698 0.682 0.108 0.388 0.343
±1.88 ±0.25 ±0.38±0.048±0.019±0.022±0.026±0.019±0.017

horsejump-high 34.78 28.35 27.28 0.932 0.846 0.830 0.074 0.249 0.226
±1.78 ±0.41 ±0.64±0.016±0.019±0.020±0.013±0.023±0.024

kite-surf 37.96 28.04 27.88 0.949 0.780 0.780 0.068 0.420 0.400
±0.50 ±0.70 ±0.32±0.005±0.026±0.018±0.006±0.031±0.016

kite-walk 37.96 29.44 29.58 0.941 0.804 0.818 0.070 0.367 0.334
±0.66 ±0.38 ±0.56±0.010±0.009±0.011±0.012±0.007±0.014

libby 38.89 29.62 29.35 0.949 0.819 0.828 0.095 0.399 0.342
±0.56 ±0.94 ±0.76±0.004±0.028±0.028±0.010±0.031±0.025

lucia 30.90 26.03 26.63 0.869 0.690 0.742 0.178 0.407 0.329
±1.44 ±0.54 ±0.65±0.047±0.027±0.036±0.068±0.033±0.040

motorbike 37.42 27.33 29.33 0.950 0.779 0.843 0.082 0.376 0.241
±0.89 ±0.93 ±1.10±0.008±0.023±0.014±0.011±0.020±0.017

swing 35.70 26.14 27.88 0.926 0.722 0.808 0.119 0.404 0.289
±0.89 ±0.54 ±0.50±0.010±0.021±0.019±0.017±0.027±0.029

tennis 35.65 27.43 28.81 0.928 0.806 0.862 0.120 0.328 0.209
±4.22 ±1.89 ±1.32±0.036±0.062±0.044±0.049±0.081±0.054

Mean 35.35 27.31 28.09 0.929 0.763 0.800 0.098 0.390 0.302
±1.30 ±0.66 ±0.66±0.018±0.023±0.020±0.020±0.024±0.021

Assessment (BVQA), particularly for generative video models [37]. While earlier methods are tied
to specific image and video corruptions [8, 28, 27], driving the need for combining multiple scores,
newer feature- and learning-based approaches [2, 26, 35] are often model- or domain-dependent and
have exhibited questioned robustness [1].

Secondly, assessing the quality of the decomposition or texture edits itself is highly non-trivial. For
scene decomposition, removing an object requires the system to hallucinate the previously occluded
geometry and appearance. Since the content of the occluded region (including potential changes)
cannot be known without a geometric reference, any arbitrary, visually plausible content may be
valid, which greatly complicates traditional quality scoring. Furthermore, for texture edits, separating
the quality contribution of the continuous texture application (method influence) from the inherent
quality of the user-defined texture (user influence) presents an additional difficulty, as the latter can
heavily skew the rated video quality.

While assessing the perceptual quality of the edits is challenging, an additional evaluation of the
temporal consistency of the edited video may provide insights. This approach allows us to quantify
the fluctuations introduced during the editing process. To this end, we computed the Temporal
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Table 6: Quantitative Comparison of Temporal Consistency (FVD and T-LPIPS) against core baselines
on a selected subset of the Waymo and DAVIS datasets. Results are reported as mean metric value
and standard deviation (± STD) across (sub-)sequences. Our method demonstrates favorable FVD
scores and achieves T-LPIPS closest to the Ground Truth (GT), indicating both high quality and
inter-frame stability. (Best results are shown in bold.)

Method Waymo DAVIS
FVD ↓ T-LPIPS FVD ↓ T-LPIPS

Ours 174 ± 238 0.063± 0.031 108 ± 35 0.143± 0.022
ORe 423± 446 0.055± 0.029 N/A N/A
ERF 439± 350 0.053± 0.026 N/A N/A
ORF N/A N/A 986±153 0.104± 0.023
LNA N/A N/A 595± 38 0.116± 0.022

GT N/A 0.079± 0.029 N/A 0.155± 0.020

Table 7: Temporal Consistency of Editing Figures

Edit T-LPIPS FID [9]
Ours ORe GT Ours ORe GT

Fig. 3, Seg. 125 0.052± 0,027 0.054± 0,032 0.081± 0,033 2.244± 1.857 1.972± 1.326 2.228± 1.578
Fig. 3, Seg. 141 0.056± 0.048 0.063± 0.062 0.103± 0.072 0.999± 1.032 1.111± 1.308 1.517± 1.222
Fig. 4 0.037± 0.006 N/A 0.043± 0.006 0.175 - N/A 0.173 -
Supl. Fig. 12 0.249± 0.028 N/A 0.261± 0.026 0.255 - N/A 0.185 -
Supl. Fig. 13 0.058± 0.012 N/A 0.080± 0.012 0.132 - N/A 0.180 -

(T)-LPIPS score (frame-by-frame perceptual difference) and the Fréchet Inception Distance (FID) [9]
score, applied frame-by-frame wise to the edited video sequence. These scores provide a quantitative
measure of temporal stability for the decomposed objects or edited regions, which, combined with a
qualitative human assessment, forms the basis of our edit evaluation, as shown in Tab. 7. For T-LPIPS
we report the mean and standard deviation over all image-pairs and object regions in case of Fig.
3, while over the full image when editing, incorporating background edits. For FID we report the
standard deviation only for the per-object decomposition evaluation, given that it is computed as a
distributional measure. For all stated edits, our consistency results are comparable to our reference
method or the respective ground truth (GT).

C.3 Evaluation on Large Ego Motion

Our method was originally designed with a primary focus on texture editable scenes, often implying
lower ego-motion to maintain stable views of objects. However, to rigorously test the robustness of
our motion model, we conducted an evaluation on two additional Waymo Open Dataset sequences,
s-191 and s-254 4, which feature significant camera ego-motion (visualized in Fig. 2).

Following our analysis on other sequences, we evaluated the performance by focusing on foreground
objects managed by dedicated nodes (vehicles and humans) and by assessing overall image quality.

For foreground objects (Vehicles and Humans), which are managed by dedicated nodes with a robust
rigid motion model, our approach achieves substantial improvements—up to 8 dB PSNR—compared
to all baselines (see Tab. 8). This success confirms that our rigid motion model, being independent of
the large global camera motion, is suited for handling moving objects in challenging, large ego-motion
environments, provided the object’s view-angle does not completely change.

The overall image scores (PSNR, SSIM, LPIPS) are presented in Tab. 9. While these composite
scores are comparable to competitors ORe and ERF, they are not substantially higher. This trade-off
is attributed to the inherent limitations of our 2.5D representation, as discussed in our limitation
section. In large ego-motion scenes, our planar background assumption requires the flow network
to learn large, complex flow vectors to cover the rapidly changing content. Assuring the fidelity of
such long flow vectors purely through photometric loss proves highly challenging. In failure cases,

4Referring to segment-1918764220984209654 and segment-2547899409721197155, subdivided in 3 / 4
sub-segments.
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Figure 2: Ground truth references and mask examples out of the two tested large-ego-motion Waymo
sequences [24] (s-191, s-254).

the flow tends to collapse regions onto the plane and unfold them as needed, which unfortunately
introduces characteristic wavy-line artifacts within the background. We showcase these artifacts
along with the still highly competitive foreground objects in Fig. 3.

This evaluation demonstrates a clear and informative trade-off. We emphasize that our proposed
Neural Atlas Graph Model is fundamentally 2.5D (planes + flow), endowed with a large inductive
bias that excels at regularizing solutions for low-parallax or sparsely observed scene elements—a
strength evident in the robust handling of moving foreground objects and in providing direct texture
editability. However, the background artifacts observed within large ego-motion scenes reveal the
current limitations of this 2.5D planar representation, which is not as well suited to model complex
3D structures with large amounts of self-occlusion within the background. We believe these findings
strongly indicate that extending this architecture towards a hybrid object-centric graph model —
combining both 2D and 3D primitives in a single render graph — is a compelling direction for future
research.

Table 8: Quantitative Evaluation on Large-Ego-Motion Dynamic Driving Sequences of the
Waymo [24] Open Driving Dataset on Vehicle and Human class.

Seq. Vehicle PSNR ↑ Vehicle SSIM ↑ Human PSNR ↑ Human SSIM ↑
Ours ORe ERF Ours ORe ERF Ours ORe ERF Ours ORe ERF

s-191 37.60 31.20 25.78 0.959 0.928 0.714 34.40 27.34 22.93 0.908 0.808 0.589
s-254 35.07 30.52 26.00 0.926 0.928 0.735 34.42 28.87 22.67 0.919 0.880 0.629

Table 9: Quantitative Evaluation on Large-Ego-Motion Dynamic Driving Sequences of the
Waymo [24] Open Driving Dataset.

Seq. PSNR ↑ SSIM ↑ LPIPS ↓
Ours ORe ERF Ours ORe ERF Ours ORe ERF

s-191 32.02 33.17 29.97 0.892 0.952 0.864 0.209 0.088 0.244
s-254 31.70 31.91 29.32 0.911 0.950 0.871 0.190 0.093 0.241

C.4 Additional Ablation Experiments

To assess the contribution of different components of our proposed model, we conducted a compre-
hensive ablation study on a subset (s-141, s-975) of the Waymo Open Dataset [24]. These sequences
were further divided into 8 subsequences, which, given a systematic evaluation of all key model com-
ponents and hyperparameters, yielded 96 additional experiments. The results of these experiments
are detailed in Tab. 10. The top row of the table, labeled "Large", represents the performance of our
full reference model as described in the main manuscript.
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Ground Truth Ours OmniRe [4] EmerNeRF [31]

Figure 3: Visual quality comparison on the large-ego-motion scene s-191. A clear trade-off is
observed. Foreground objects managed by the rigid motion model exhibit increased sharpness and
reduced edge artifacts compared to baselines. Conversely, the high flow compensation required by our
2.5D background may cause visual degradation in rapidly changing background regions, manifesting
as flow artifacts or blurring.

Small: 32.64 / 0.934 Medium: 38.29 / 0.968 Large: 40.49 / 0.976

Figure 4: Representative examples of NAG nodes with varying parametrization sizes (Small, Medium,
Large), including their PSNR / SSIM scores. Noticeable image quality degradation and flow collaps-
ing artifacts are evident in the small node due to its limited representation, whereas distinguishing
visual differences between medium and large nodes is challenging, with only minor lighting variations
on the ground.

Parametrization Sizes We evaluated the impact of varying the model size ("Medium" and "Small")5

and observed a general trend of performance degradation (lower PSNR and SSIM, higher LPIPS) with
reduced capacity, highlighting the importance of model scale for achieving optimal reconstruction
quality. A representative visual example of these different model sizes and their corresponding
PSNR/SSIM scores can be found in Fig. 4, further illustrating the qualitative differences.

Initialization & Coarse-to-fine Furthermore, we investigated the significance of several key
modules within our architecture by systematically excluding or modifying them. The rows "Coarse
Init-Projection" and "Excl. Coarse-to-fine" examine the role of our coarse initialization and the
subsequent coarse-to-fine refinement strategy. For the first, we limit the size of our initial estimates
for color C̃i ∈ R20×20 and opacity Ãi ∈ R20×20 to a much lower spatial extend than the original
used, which is based on the mask size. This shall mimic a mean initialization of the objects. The
latter, deactivates our coarse-to-fine scheme. While the performance drop observed may look rather
small, the visual changes on decomposition and edits may be very significant, as excluding these
components could lead to much more background information in the foreground or vice-versa.

Flow- & View-Fields The rows "Excl. Flow" and "Excl. View-Dependence" quantify the impact of
our optical flow estimation and view-dependent modeling components, by disabling them respectively.
The substantial decrease in all evaluated metrics upon their removal underscores their critical role in
handling motion and viewpoint changes within the driving scenes. Notably, the combined exclusion
of both flow and view-dependence ("Excl. Flow + View-Dependence") resulted in the most significant
performance decline, emphasizing the synergy between these modules.

Position Learning We also assessed the translation learning component ("Excl. Translation
Learning"). Excluding this learning component slightly weakens the overall reconstruction quality.

5The sizes "Large", "Medium", "Small" are referring to different parameterizations of our MLP Network and
Hash-Grid Configurations. Effectively, they are reducing the number of levels and sizes within the hash-grid
encoding, as well as reducing the number of hidden layers within our MLPs. For details we refer to our code
base.
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Table 10: Ablation Experiments. We conducted ablation studies on a subset of our Waymo Datasets
[24], evaluating various components of our model. Best results are bold, second best are underlined.
The top row (Large) marks the reference model stated in our manuscript. On different model sizes,
the scores may degrade significantly. When excluding or changing certain keyparts, we observe
degradation of the performance, showing their importance. When also learning the plane rotation (cf.
Davis), this slightly benefits performance reported on this subset.

Abl. PSNR ↑ SSIM ↑ LPIPS↓ Vehicle Human
PSNR↑ SSIM↑ PSNR↑ SSIM↑

Large 41.42 0.977 0.057 44.94 0.986 44.65 0.987
Medium 39.33 0.968 0.071 42.09 0.973 41.80 0.975
Small 35.64 0.943 0.099 36.56 0.936 36.90 0.939

Coarse Init-Projection 41.27 0.977 0.060 44.87 0.985 44.84 0.987
Excl. Coarse-to-fine 41.37 0.977 0.058 44.93 0.985 44.86 0.987
Excl. Flow 39.44 0.974 0.063 44.47 0.981 44.26 0.985
Excl. View-Dependence 38.08 0.961 0.095 34.07 0.901 34.91 0.913
Excl. Flow & View-Dependence 32.29 0.936 0.110 24.71 0.775 27.92 0.808
Excl. Translation Learning 39.37 0.971 0.062 45.15 0.984 44.88 0.987
Incl. Plane Rotation Learning 41.46 0.977 0.056 45.35 0.987 46.94 0.992
Num. Position CP P = F/2 40.44 0.972 0.061 45.22 0.986 44.77 0.986
Num. Position CP P = F3/4 40.97 0.976 0.060 45.08 0.986 44.66 0.986

Excl. Mask-Loss 41.31 0.977 0.058 44.95 0.986 44.88 0.987
Morph. Masks 41.24 0.975 0.060 44.92 0.984 44.91 0.986
Morph. Masks, Excl. Mask-Loss 41.29 0.975 0.060 45.00 0.985 44.94 0.986
Bounding. Masks 41.15 0.974 0.061 44.82 0.982 44.87 0.986
Bounding. Masks, Excl. Mask-Loss 41.20 0.975 0.060 44.80 0.982 44.88 0.986

While the quantitative impact is minor on the studied Waymo sequence, the degradation would likely
be more severe if less precise initializations (e.g., non-3D bounding box initializations) were provided.
The model’s ability to maintain high object-based scores, despite excluding translation, suggests that
the planar flow-, or view-dependent- fields compromises for errors within the rigid motion model.

Additionally, we explored the effect of explicitly learning plane rotations, similar to our DAVIS
[19] experiments. The row "Incl. Plane Rotation Learning" shows a slight improvement across all
metrics on this specific Waymo subset compared to the "Large" baseline. However, we were unable to
consistently verify this improvement across additional Waymo sequences, suggesting that its benefit
might be scene-specific or less pronounced in more diverse scenarios.

Position Granularity The two rows ("Num. Position CP P = F/2" and "Num. Position CP
P = F3/4") investigate the influence of the number of control points used for our motion model.
Employing fewer control points results in a smoother motion trajectory for both the ego-camera and
individual objects. Interestingly, the observed improvement in Vehicle PSNR and SSIM with fewer
control points is relatively minor and just slightly holds for the Human category, which often exhibits
more complex, non-rigid motion. This discrepancy suggests that while a smoother motion constraint
might offer a slight benefit for predominantly rigid objects like vehicles, it could be insufficient and
potentially detrimental for capturing the intricate deformations and trajectories of non-rigid objects
such as pedestrians. Further, over-smoothing the camera motion does negatively impact overall scene
alignment, outweighing any minor per-object benefits seen for vehicles, measured in the worse overall
scores.
Yet, the observed benefits suggest that imposing different smoothness assumptions for rigid objects
(like vehicles), non-rigid objects (like pedestrians), as well as the ego-camera, may further improve
the overall reconstruction quality, but requires further investigation.

Mask Quality To assess the influence of initial mask quality and the mask loss term on our
reconstruction, we conducted an exemplary ablation. First, we tested the impact of the mask loss
itself by setting its weight to 0 on the original data, labeled "Excl. Mask-Loss" in Tab. 10.
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Second, we generated corrupted mask versions from our precise segmentations to simulate less ideal
input and training conditions. We created two specific mask types for this analysis: the Morphological
Masks ("Morph. Masks") simulate imprecise segmentation by artificially corrupting the precise masks
using morphological operations—specifically, smooth boundary erosion and dilation based on Perlin
noise [20] maps. Alternatively, the Bounding Box Masks ("Bounding. Masks") simulate the scenario
where only axis-aligned bounding boxes are available, by using the bounding box of the original
object mask. These two corrupted mask versions were then each trained both with and without the
mask loss, resulting in the final set of conditions detailed in Tab. 10. Examples of these corrupted
masks are presented in Fig. 5.

Based on the quantitative metrics in Tab. 10, we observe that the mask quality and the mask loss term
do not significantly affect the overall reconstruction quality (PSNR / SSIM / LPIPS). This relative
resilience is expected, as the highly over-parametrized, node-based representation of the NAG has
sufficient capacity to fit the scene even with minor initialization errors. However, we explicitly
introduce the mask loss to suppress noise in the foreground and increase opacity in low-contrast
segmentation areas (e.g., a grey car on a grey road).

Since the masks are used for initializing and refining individual atlas nodes to correctly factorize the
scene, performance differences become apparent when qualitatively studying the decomposed objects.
We present two decomposed objects from the s-141 scene in Fig. 6 and 7. For highly contrastive
objects with clear, independent motion (like the white truck in Fig. 6), the decomposition quality
is minimally impacted by mask quality or loss. At most, a slight increase in opacity around the
object boundaries fitting to background noise can be observed. Conversely, for challenging, occluded
objects (such as the person in Fig. 7), the effect is significant: the representation severely degrades
when using aberrated masks. The original precise masks were necessary to maintain a reasonable
representation of the person, while disabling the mask loss further exacerbated the fitting to noise.

Furthermore, poor mask quality may indirectly affect texture editability, as fitting exterior noise or
background content into the atlas can push information into the view-dependence field, potentially
hindering subsequent texture modification. Nevertheless, the qualitative examples in Fig. 6 suggest
that even using bounding box masks or segmentation models with coarser outputs could be sufficient
to yield a reasonable scene decomposition when interest lies primarily in dominant foreground objects
with clear motion patterns. While an in-depth discussion on our method’s mask-quality sensitivity
would require dedicated experiments on synthetic data, our exemplary study indicates certain usability
even in the absence of precise segmentations, relying only on bounding boxes.

Figure 5: Ground truth references and masks (top) and their corrupted versions using morphological
operations (middle) as well as axis-aligned bounding box masks (bottom). We showcase four frames
of the s-141 sequence (timestamps 40, 45, 50, 55), with 0.5 seconds spacing. The morphological
masks show significant aberated and time-varying borders, while the imprecision of bounding boxes
pose a challenge on adressing overlapping.
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Precise Morph. Bounding Box

Precise w/o Mask Loss Morph. w/o Mask Loss Bounding Box w/o Mask Loss

Figure 6: Object decomposition of the white truck from scene s-141 (timestamp 45; ref. Fig. 5).
The top row shows results trained with the mask loss, while the bottom row excludes it. Even
under aberrated masks (Morph. and Bounding Box), the decomposition remains highly precise for
contrast-rich and independently moving objects, showing only minor increases in background noise
fitting.

Precise Morph. Bounding Box

Precise w/o Mask Loss Morph. w/o Mask Loss Bounding Box w/o Mask Loss

Figure 7: Object decomposition of an occluded person in scene s-141 (following Fig. 6). While the
original version maintains a consistent silhouette despite heavy occlusion, the use of aberrated masks
(Morph. and Bounding Box) tends to produce a less consistent and visually disturbed representation
in these challenging occluded regions.

In summary, our ablation studies provide valuable insights into the contribution of individual com-
ponents of our model, highlighting the importance of model size, flow estimation, view-dependent
modeling, and translation learning for achieving high-quality reconstructions.
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C.5 Additional Visual Results

This supplementary section provides extended visual results that further illustrate the capabilities of
our proposed NAG representation. We present additional examples showcasing the editing potential
of NAGs, including object insertion, retiming, and shifting. Furthermore, we offer supplementary
visual examples from the Davis Dataset [19], including reconstructions and their corresponding scene
decompositions, providing deeper insights into our model’s performance and representation.

In Fig. 8 we demonstrate our reconstructions on 3 more scenes, showcasing its handling of complex
and fine details like water droplets, the feets of cyclists which we are, despite their challenging
motion, capable to represent accurately. Further we highlighted our improved handling of distant
objects emphasizing our visual performance increases w.r.t our baselines.

Further, we illustrate in Fig. 9 the comprehensive editing capabilities of our method on the Waymo
s-125 scene. We demonstrate three distinct types of manipulations: object removal (specifically, the
truck on the left), object duplication / adding and precise spatial shifting (exemplified by the white car
copied and moved by 2 units to the left and 0.5 units towards the camera), and temporal manipulation
(achieved by duplicating the red car and shifting its presence by ±5 timestamps). These examples
collectively highlight our method’s versatility in handling edits that remain consistent with our flow-
and view-dependent model, allowing for precise control over scene composition and dynamics.

Figure 10 showcases the visual effectiveness of our method on the DAVIS Dataset [19]. Our
view-dependent model components lead to significant improvements in visual quality compared to
baselines, evident in increased sharpness and the detailed rendering of fine structures such as tire
spokes. Notably, even with its view-dependent nature, our method produces reasonable background
estimates in occluded regions, as illustrated by the car-shadow example. Figure 11 presents results
on three additional challenging DAVIS sequences where our method outperforms baselines: 1)
motorbike: capturing the fast-moving foreground with fidelity; 2) bear: accurately modeling non-
rigid motion and intricate fur texture; and 3) hike: handling actor movement against a complex,
high-depth background.

Lastly, we state two more texture edits of DAVIS [19] sequences in Fig. 12 and Fig. 13 where
we utilized an off-the-shelf image generation model to create new textures for the decomposed
foreground object, and applied these consistently along the video, yielding accurate edits even when
changing the complete texture of these mostly rigid moving objects.

C.6 Additional Gaussian Splatting Baselines

While ORe and ERF are recent 3DGS and NeRF baselines for object-specific and agnostic scene
reconstruction, we broaden our analysis to include further dynamic 3D Gaussian Splatting methods.

To ensure comprehensive coverage against the state-of-the-art methods in dynamic 3DGS, we
specifically evaluated three additional methods: Street Gaussians Street Gaussians (SGS) [30]
(object-specific), Periodic Vibration Gaussian (PVG) [3] (object-agnostic) and Deformable 3D
Gaussians (DGS) [32], which uses a global, non-separable gaussian representation, on our selected
Waymo sequences. We utilize the benchmark suite from [4] for evaluation, with overall results
presented in Tab. 11. Our method, NAG, outperforms all these additional baselines in terms of PSNR
(+4.08 dB) and SSIM (+0.014), while remaining competitive in LPIPS (+0.005). Furthermore, the
object-specific results in Tab. 12 confirm NAG’s superior performance in preserving structural details
and enhancing dynamic object representation.

We note, that PVG yields a 0.85 dB higher PSNR score than ORe. Yet, given PVG is an object-
agnostic representation, while ORe is object-specific, with support for object-based editing, more
closely matching our methods capabilities, we stick to ORe as our main GS comparison within our
manuscript.

C.7 Training Time

The training duration for the Neural Atlas Graph ranges from 2 to 6 hours per scene on an NVIDIA
L40 GPU. To accurately assess this performance, we contextualize these training times within the
domain of dynamic neural scene representation and we further detail the sources of this computa-
tional cost. State-of-the-art methods, such as ORe [4], report comparable training durations (e.g.,

17



Ground Truth Ours OmniRe [4] EmerNeRF [31]

Figure 8: Extended visual results on the Waymo Dataset [24], showcasing reconstructed sequences
s-141, s-975, and s-125. Our model demonstrates the ability to capture fine details, such as water
droplets and the non-rigid motion of cyclists’ feet, while exhibiting fewer artifacts compared to
baseline methods.

Figure 9: Illustration of editing operations on the s-125 scene. We showcase: the removal of an
existing object (left truck), copying and spatially shifting the white car, and the temporal manipulation
of the red car through duplication and a ±5 timestamp shift.

approximately one hour for a single scene at a lower 960×640 resolution). Crucially, the proposed
method consistently trains at full resolution (1920×1280 for Waymo and up to 1920×1080 for DAVIS),
which substantially increases the computational load compared to baselines often optimized for lower
resolutions. Furthermore, highly optimized methods, such as those leveraging Gaussian Splatting,
have benefited from dedicated native CUDA implementations and extensive optimization efforts over
recent years [11, 34].

Tab. 13 provides a direct comparison of observed training times across all baselines at their full
respective resolutions. For Waymo, we used a subsequence from segment 975 with a length of 68
frames, and for DAVIS, the popular bear sequence with 74 frames.

Our training time is significantly shorter than the other atlas-based methods, LNA and ORF, on the
DAVIS dataset. On Waymo, our time is comparable to ORe [4] but slower, which is attributable to
the latter’s highly optimized Gaussian Splatting implementations. ERF [31] is significantly faster
as it is not a scene graph method and lacks a dedicated model per object, reducing architectural
overhead. It should also be noted that ERF generally produced less accurate results in our quantitative
experiments.
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Ground Truth Ours ORF [13] LNA [10]
Figure 10: Visual comparison and decomposition of the blackswan and car-shadow sequence within
the DAVIS dataset. The insets stating difficult regions underlining the capabilities of our model in
accurately representing highly textured regions (swan head), time-variant content (spinning wheels)
and distant background objects.

Ground Truth Ours ORF [13] LNA [10]

Figure 11: Additional visual examples of the DAVIS [19] sequences motorbike, bear and hike,
showcasing our models quality in representing fine and complex details on rigid and non-rigid
foreground actors.

We emphasize that three key components are essential for achieving the high-quality and editable
NAG representation, inherently contribute to the overall training duration:

1. Extensive Ray-Casting: Learning dynamic video at high resolution necessitates extensive
ray-casting. For instance, our full training involves 2.8× 109 rays over 80 epochs. Training
time naturally reduces for lower resolutions or shorter videos (e.g., to under 20 minutes for
highly reduced settings).

2. Multi-Stage Optimization: A three-phase optimization strategy is employed to ensure
stable convergence, accurate decomposition, and enhanced texture editability, yet may add
an overhead in execution time.
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Figure 12: Advanced texture editing applied to the blackswan sequence (DAVIS dataset [19]). The top
row presents the ground truth. The lower rows display edits where an off-the-shelf image generation
model was leveraged to create rainbow and white swan texture variants. Using these generated
textures, our method effectively propagates these localized changes consistently across all video
frames, demonstrating robust temporal coherence.

Figure 13: Texture edits using DAVIS [19] boat sequence. Similar to Fig. 12, we state the boat
sequence, retexturing it with a rainbow and a red texture. The top row shows the ground truth, while
the lower ones are the respective edits.

3. Per-Object Networks: The training time scales with scene complexity due to the presence
of dedicated, independent neural networks for each object and the background, increasing
the total parameter count and computation per step.

These architectural choices are a necessary investment to deliver the decomposition and editing
capabilities that are the focus of this work. Full training details and ablation studies are available
in the Experimental Details (Sec. B.2) of this supplementary material. We see potential areas for
future optimization in all these components, such as leveraging more efficient ray-casting implemen-
tations, employing object size-driven network architectures, or improving initialization strategies to
significantly reduce training time.

D Discussion on Scene Representation Methods

As recent literature has introduced a wide range dynamic scene representation methods tailored to
different domains, in this section we summarize their core ideas and priors to situate Neural Atlas
Graphs (NAGs) within the broader research context. We separate these broadly into 2D-, 2.5D, and
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Table 11: Quantitative Evaluation on Dynamic Driving Sequences of the Waymo [24] Open Driving
Dataset. The temporal consistency is measured by the inter-frame standard deviation (± STD), which
is calculated over sub-segments and mean-aggregated per sequence. Best results are in bold. PVG
refers to Periodic Vibration Gaussian [3], DGS to Deformable 3D Gaussians [33], and SGS to Street
Gaussians[30]. Our method compares favorably against these additional object-agnostic (PVG, DGS)
and object-specific (SGS) baselines, including high consistency in PSNR, SSIM and LPIPS.

Seq. PSNR ↑ SSIM ↑ LPIPS ↓
Ours PVG DGS SGS Ours PVG DGS SGS Ours PVG DGS SGS

s-975 40.21 34.00 36.67 36.19 0.976 0.958 0.961 0.962 0.058 0.064 0.059 0.054
±1.11 ±1.88 ±1.96 ±2.24±0.004±0.006±0.007±0.005±0.012±0.008±0.018±0.010

s-203 43.15 38.71 35.86 33.08 0.978 0.966 0.960 0.958 0.070 0.052 0.063 0.060
±0.39 ±0.98 ±1.03 ±1.81±0.001±0.001±0.002±0.003±0.004±0.002±0.004±0.004

s-125 43.32 38.78 35.82 38.47 0.980 0.964 0.958 0.964 0.057 0.046 0.053 0.040
±0.49 ±0.61 ±1.16 ±0.72±0.003±0.001±0.004±0.002±0.007±0.002±0.005±0.002

s-141 42.55 38.31 33.97 33.56 0.978 0.963 0.949 0.954 0.057 0.054 0.080 0.065
±1.60 ±0.54 ±1.06 ±1.21±0.003±0.002±0.005±0.003±0.005±0.004±0.010±0.005

s-952 41.89 39.55 35.62 34.78 0.976 0.968 0.963 0.961 0.058 0.041 0.047 0.047
±0.59 ±0.79 ±1.59 ±1.38±0.003±0.002±0.004±0.003±0.006±0.003±0.008±0.004

s-324 40.85 36.97 34.01 30.96 0.977 0.961 0.953 0.942 0.038 0.038 0.049 0.059
±1.31 ±0.65 ±1.25 ±2.10±0.002±0.002±0.004±0.010±0.004±0.003±0.006±0.009

s-344 41.84 38.47 32.75 29.90 0.983 0.968 0.957 0.953 0.031 0.030 0.046 0.050
±0.52 ±0.72 ±1.32 ±1.01±0.001±0.002±0.004±0.004±0.002±0.002±0.005±0.006

Mean 41.85 37.77 34.83 33.70 0.978 0.964 0.957 0.956 0.051 0.046 0.056 0.054
±0.91 ±0.87 ±1.36 ±1.49±0.002±0.003±0.004±0.005±0.006±0.003±0.008±0.006

Table 12: Quantitative Evaluation of Human and Vehicle Rendering on Waymo [24] Driving Se-
quences for additional 3DGS methods. The temporal consistency is computed as in Tab. 11 - by
the inter-frame standard deviation (± STD), calculated over sub-segments and mean-aggregated per
sequence.

Seq. Vehicle PSNR ↑ Vehicle SSIM ↑ Human PSNR ↑ Human SSIM ↑
Ours PVG DGS SGS Ours PVG DGS SGS Ours PVG DGS SGS Ours PVG DGS SGS

s-975 46.79 33.11 27.22 32.75 0.991 0.912 0.824 0.930 45.37 33.06 26.09 23.01 0.989 0.903 0.788 0.744
±1.21 ±1.82 ±2.55 ±2.97±0.001±0.025±0.064±0.031 ±1.58 ±1.90 ±2.64 ±2.93±0.002±0.026±0.049±0.048

s-203 41.90 34.46 28.39 30.19 0.986 0.946 0.848 0.897 45.40 35.79 27.28 16.22 0.986 0.947 0.870 0.665
±1.89 ±2.05 ±2.94 ±2.96±0.005±0.019±0.063±0.050 ±1.65 ±1.50 ±2.88 ±2.57±0.004±0.006±0.031±0.067

s-125 41.00 33.61 25.97 28.82 0.989 0.955 0.815 0.875 N/A N/A N/A N/A N/A N/A N/A N/A
±1.90 ±1.28 ±1.95 ±2.39±0.004±0.011±0.053±0.054 N/A N/A N/A N/A N/A N/A N/A N/A

s-141 43.21 33.76 26.15 32.07 0.981 0.936 0.801 0.916 44.22 36.13 29.78 25.08 0.986 0.940 0.828 0.725
±1.44 ±1.84 ±2.29 ±2.34±0.007±0.015±0.050±0.032 ±1.61 ±1.67 ±3.31 ±2.91±0.005±0.016±0.070±0.098

s-952 40.94 32.88 27.27 28.74 0.986 0.942 0.848 0.894 40.45 34.90 26.02 23.29 0.968 0.928 0.706 0.629
±1.46 ±1.97 ±3.70 ±3.88±0.004±0.016±0.063±0.055 ±2.82 ±1.77 ±3.29 ±2.77±0.021±0.018±0.087±0.092

s-324 41.71 34.03 29.20 29.29 0.986 0.948 0.869 0.880 44.12 34.16 26.20 22.56 0.988 0.918 0.727 0.626
±1.56 ±2.19 ±3.29 ±3.73±0.004±0.016±0.057±0.062 ±1.95 ±2.21 ±2.69 ±2.40±0.005±0.027±0.076±0.098

s-344 43.97 34.59 28.59 28.81 0.985 0.948 0.823 0.860 40.99 33.99 21.37 17.04 0.975 0.933 0.640 0.509
±1.69 ±1.66 ±2.77 ±3.35±0.007±0.010±0.031±0.032 ±2.97 ±1.60 ±2.60 ±2.35±0.016±0.014±0.086±0.095

Mean 42.88 33.74 27.54 30.10 0.986 0.940 0.832 0.893 42.94 34.63 25.93 21.82 0.981 0.927 0.740 0.639
±1.56 ±1.83 ±2.81 ±3.13±0.005±0.016±0.054±0.045 ±2.21 ±1.81 ±2.92 ±2.64±0.010±0.019±0.074±0.088

3D model categories based on their representation domain. Furthermore, we classify them based on
whether they are object-specific (separating objects based on modality/user input) or object-agnostic
(differentiating only static and dynamic scenbe content). These classifications only serve as broad
guidelines as their boundaries can be fluid.

2D - Scene Models This family of models focuses primarily on 2D decomposition, rooted in classic
video layer separation and sprite-based techniques. The key idea here is to decompose an abritrary
input video into a (static) background and one or more dynamic layers.

Layered Neural Atlases (LNA) [10] achieve this through a time-consistent atlas or canvas representa-
tion. LNA learns a 2D-to-2D warp that maps scene points onto this unwrapped atlas. This design
results in a highly compact video representation that facilitates direct appearance editing on the 2D
atlas – similar to editing a regular image – and propagating those changes consistently across all time
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Table 13: Observed training times at full resolution for a representative sequence within the datasets.
Dataset Method Time (min.)

Waymo
Ours 140
ORe [4] 127
ERF [31] 42

Davis
Ours 198
ORF [13] 279
LNA [10] 444

steps. LNA is highly self-contained, requiring only the input video, masks for designated foreground
layers, and pre-computed optical flow. Given that masks are used to separate objects, LNA can be
treated as object-specific, relying on a separate masking pipeline. Subsequent works like Deformable
Sprites [33] take a similar approach, but learn a sprite-based deformation and rely on motion cues
rather than explicit masks to separate individual layers.

2.5D - Mixed Scene Models This category is comprised of models which integrate elements of
3D reasoning, such as shared reference frames or volumetric models, yet remain grounded in a
predominantly layered or planar framework.

As an example, Omnimatte [16] focuses on separating objects along with their associated effects
(shadows, dust, reflections). Omnimatte uses inputs similar to LNA but computes frame-by-frame
homographies to yield a common reference system, which places it in the 2.5D domain due to its
reliance on 3D planar motion assumptions while not explicitly making use of a 3D mesh representation.
The layers are typically represented as U-Nets [21], allowing for high fidelity, but they lack the direct,
intuitive editing control of LNA’s atlas structure.

OmnimatteRF (ORF) [13], a direct successor of Omnimatte, addresses the limited expressivity of a
2D background layer by replacing it with a volumetric 3D NeRF. This requires the model to have a
camera pose initialization, which can be derived from Structure-from-Motion (SfM) techniques such
as COLMAP [22, 23] or NeRF-based approaches [14]. Similar to Omnimatte, ORF relies on optical
flow, masks, homographies, and a (monucular) depth estimation – remaining object-specific.

A downside shared across these 2D/2.5D models is their reliance on a correct – often pre-defined
– ordering of the foreground layers. As they compose image layers via alpha matting, an improper
order can lead to transparency issues or incorrect information being picked up from objects in the
background – e.g., holes in the foreground content. This becomes a large problem under varying
occlusions or in busy scenes where a consistent layer ordering is hard to define as objects move in
front and behind one another.

3D - Scene Models This family of models explicitly represents geometry and color content in 3D
space, offering a more expressive and potentially more geometrically consistent representation of
real-world scenes than 2D or 2.5D methods.

Neural Scene Graphs (NSG) [18] addresses positional editability by explicitly factorizing the scene
into discrete semantic components (e.g., background, individual vehicles, pedestrians), with each
object represented as a node in the scene graph. These nodes are modeled as individual radiance
fields, linked by edges representing spatial relationships and 3D pose transformations. Following on
NSGs, StreetGS [30] and further OmniRe (ORe) [4] use dynamic 3D Gaussian splatting techniques to
represent objects, yielding faster render performance while maintaining positional editing capabilities.
However, editing texture or appearance in these volumetric, neural field, or Gaussian representations
is non-trivial, as changes must be propagated in a visually consistent way throughout the continuous
3D content.

The core strength of these object-specific scene graph methods is their high degree of 3D editability;
objects can be translated, rotated, and removed via simple graph manipulation. Conversely, these
methods are rarely self-contained, requiring extensive semantic and motion priors derived from
external structured inputs such as 3D bounding boxes, object trajectories, or LIDAR depth data. Their
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performance is thus heavily tied to the availability and quality of these priors, commonly found in
specialized autonomous driving datasets [24, 7].

Beyond these object-specific approaches, object-agnostic methods have also emerged. These ap-
proaches, such as EmerNeRF (ERF) [31] and Gaussian Splatting approaches like Periodic Vibration
Gaussian (PVG) [3], separate only static from dynamic content. While these methods have a lower
reliance on data priors, they are also more difficult to directly edit as their representations can lack
semantic meaning without nodes tied to discrete objects.

Neural Atlas Graphs We position our Neural Atlas Graphs (NAGs) within the 2.5D domain,
drawing inspiration from 3D-based NSGs for scene decomposition while relying on lower dimensional
component representations for easier appearance editing. These design choice highlight a core trade-
off of all of these methods: 3D expressivity is versus ease of texture editing.

This hybrid structure enables three key capabilities: Direct Appearance Editing through manipulation
of the 2D atlas canvas (similar to LNA); Positional Editing by modifying the learned spline-based rigid
motion trajectories for object planes (similar to NSGs); and Implicit Occlusion Handling by explicitly
modeling object movement and interaction along learned 3D trajectories, directly addressing the
layer ordering issue.

In summary, NAGs occupy a unique point in the scene representation spectrum. NAGs adopt 3D
structural priors to gain positional editing and robust occlusion handling, while retaining the ease of
texture editing of a 2D atlas representations. While this approach requires sacrificing self-containment
for structured priors (bounding boxes, trajectories, etc.), we showcase within our Outdoor Videos
that even in domains of high self-containment (less geometric prior), NAGs construct a reasonable
representation with high fidelity and demonstrate a clear advantage over 3D representations in low-ego
motion and low-parallax scenes.
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